skip to main content


Search for: All records

Creators/Authors contains: "Sheng, Cheng"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. The ranked (or top-k) document retrieval problem is defined as follows: preprocess a collection{T1,T2,… ,Td}ofdstrings (called documents) of total lengthninto a data structure, such that for any given query(P,k), wherePis a string (called pattern) of lengthp ≥ 1andk ∈ [1,d]is an integer, the identifiers of thosekdocuments that are most relevant toPcan be reported, ideally in the sorted order of their relevance. The seminal work by Hon et al. [FOCS 2009 and Journal of the ACM 2014] presented anO(n)-space (in words) data structure withO(p+klogk)query time. The query time was later improved toO(p+k)[SODA 2012] and further toO(p/logσn+k)[SIAM Journal on Computing 2017] by Navarro and Nekrich, whereσis the alphabet size. We revisit this problem in the external memory model and present three data structures. The first one takesO(n)-space and answer queries inO(p/B+ logBn + k/B+log*(n/B)) I/Os, whereBis the block size. The second one takesO(nlog*(n/B)) space and answer queries in optimalO(p/B+ logBn + k/B)I/Os. In both cases, the answers are reported in the unsorted order of relevance. To handle sorted top-kdocument retrieval, we present anO(nlog(d/B))space data structure with optimal query cost.

     
    more » « less
  2. Inter-hemispheric asymmetry (IHA) in Earth’s ionosphere–thermosphere (IT) system can be associated with high-latitude forcing that intensifies during storm time, e.g., ion convection, auroral electron precipitation, and energy deposition, but a comprehensive understanding of the pathways that generate IHA in the IT is lacking. Numerical simulations can help address this issue, but accurate specification of high-latitude forcing is needed. In this study, we utilize the Active Magnetosphere and Planetary Electrodynamics Response Experiment-revised fieldaligned currents (FACs) to specify the high-latitude electric potential in the Global Ionosphere and Thermosphere Model (GITM) during the October 8–9, 2012, storm. Our result illustrates the advantages of the FAC-driven technique in capturing high-latitude ion drift, ion convection equatorial boundary, and the storm-time neutral density response observed by satellite. First, it is found that the cross-polar-cap potential, hemispheric power, and ion convection distribution can be highly asymmetric between two hemispheres with a clear Bydependence in the convection equatorial boundary. Comparison with simulation based on mirror precipitation suggests that the convection distribution is more sensitive to FAC, while its intensity also depends on the ionospheric conductance-related precipitation. Second, the IHA in the neutral density response closely follows the IHA in the total Joule heating dissipation with a time delay. Stronger Joule heating deposited associated with greater high-latitude electric potential in the southern hemisphere during the focus period generates more neutral density as well, which provides some evidences that the high-latitude forcing could become the dominant factor to IHAs in the thermosphere when near the equinox. Our study improves the understanding of storm-time IHA in high-latitude forcing and the IT system.

     
    more » « less
  3. An important question that is being increasingly studied across subdisciplines of Heliophysics is “how do mesoscale phenomena contribute to the global response of the system?” This review paper focuses on this question within two specific but interlinked regions in Near-Earth space: the magnetotail’s transition region to the inner magnetosphere and the ionosphere. There is a concerted effort within the Geospace Environment Modeling (GEM) community to understand the degree to which mesoscale transport in the magnetotail contributes to the global dynamics of magnetic flux transport and dipolarization, particle transport and injections contributing to the storm-time ring current development, and the substorm current wedge. Because the magnetosphere-ionosphere is a tightly coupled system, it is also important to understand how mesoscale transport in the magnetotail impacts auroral precipitation and the global ionospheric system response. Groups within the Coupling, Energetics and Dynamics of Atmospheric Regions Program (CEDAR) community have also been studying how the ionosphere-thermosphere responds to these mesoscale drivers. These specific open questions are part of a larger need to better characterize and quantify mesoscale “messengers” or “conduits” of information—magnetic flux, particle flux, current, and energy—which are key to understanding the global system. After reviewing recent progress and open questions, we suggest datasets that, if developed in the future, will help answer these questions. 
    more » « less
  4. Abstract

    Techniques developed in the past few years enable the derivation of high‐resolution regional ion convection and particle precipitation patterns from the Super Dual Auroral Radar Network (SuperDARN) and Time History of Events and Macroscale Interactions during Substorms All‐Sky Imager (ASI) observations, respectively. For the first time in this study, a global ionosphere‐thermosphere model (GITM) is driven by such high‐resolution patterns to simulate the I‐T response to the multi‐scale geomagnetic forcing during a real event. Specifically, GITM simulations have been conducted for the 26 March 2014 event with different ways to specify the high‐latitude forcing, including empirical models, high‐resolution SuperDARN convection patterns, and high‐resolution ASI particle precipitation maps. Multi‐scale ion convection forcing estimated from high‐resolution SuperDARN observations is found to have a very strong meso‐scale component. Multi‐scale convection forcing increases the regional Joule heating (integrated over the high‐resolution SuperDARN observation domain) by ∼30% on average, which is mostly contributed by the meso‐scale component. Meso‐scale electron precipitation derived from ASI measurements contributes on average about 30% to the total electron energy flux, and its impact on the I‐T system is comparable to the meso‐scale convection forcing estimated from SuperDARN observations. Both meso‐scale convection and precipitation forcing are found to enhance ionospheric and thermospheric disturbances with prominent structures and magnitudes of a few tens of meters per second in the horizontal neutral winds at 270 km and a few percent in the neutral density at 400 km through comparisons between simulations driven by the original and smoothed high‐resolution forcing patterns.

     
    more » « less
  5. Abstract

    Meso‐scale plasma convection and particle precipitation could be significant momentum and energy sources for the ionosphere‐thermosphere (I‐T) system. Following our previous work on the I‐T response to a typical midnight flow burst, flow bursts with different characteristics (lifetime, size, and speed) have been examined systematically with Global Ionosphere‐Thermosphere Model (GITM) simulations in this study. Differences between simulations with and without additional flow bursts are used to illustrate the impact of flow bursts on the I‐T system. The neutral density perturbation due to a flow burst increases with the lifetime, size, and flow speed of the flow burst. It was found that the neutral density perturbation is most sensitive to the size of a flow burst, increasing from ∼0.3% to ∼1.3% when the size changes from 80 to 200 km. A westward‐eastward asymmetry has been identified in neutral density, wind, and temperature perturbations, which may be due to the changing of the forcing location in geographic coordinates and the asymmetrical background state of the I‐T system. In addition to midnight flow bursts, simulations with flow bursts centered at noon, dawn, and dusk have also been carried out. A flow burst centered at noon (12.0 Local Time [LT], 73°N) produces the weakest perturbation, and a flow burst centered at dusk (18.0 LT, 71°N) produces the strongest. Single‐cell and two‐cell flow bursts induce very similar neutral density perturbation patterns.

     
    more » « less
  6. Abstract

    In this study, the Global Ionosphere Thermosphere Model is utilized to investigate the inter‐hemispheric asymmetry in the ionosphere‐thermosphere (I‐T) system at mid‐ and high‐latitudes (|geographic latitude| > 45°) associated with inter‐hemispheric differences in (a) the solar irradiance, (b) geomagnetic field, and (c) magnetospheric forcing under moderate geomagnetic conditions. Specifically, we have quantified the relative significance of the above three causes to the inter‐hemispheric asymmetries in the spatially weighted averaged E‐region electron density, F‐region neutral mass density, and horizontal neutral wind along with the hemispheric‐integrated Joule heating. Further, an asymmetry index defined as the percentage differences of these four quantities between the northern and southern hemispheres (|geographic latitude| > 45°) was calculated. It is found that: (a) The difference of the solar extreme ulutraviolet (EUV) irradiance plays a dominant role in causing inter‐hemispheric asymmetries in the four examined I‐T quantities. Typically, the asymmetry index for the E‐region electron density and integrated Joule heating at solstices with F10.7 = 150 sfu can reach 92.97% and 38.25%, respectively. (b) The asymmetric geomagnetic field can result in a strong daily variation of inter‐hemispheric asymmetries in the F‐region neutral wind and hemispheric‐integrated Joule heating over geographic coordinates. Their amplitude of asymmetry indices can be as large as 20.81% and 42.52%, which can be comparable to the solar EUV irradiance effect. (c) The contributions of the asymmetric magnetospheric forcing, including particle precipitation and ion convection pattern, can cause the asymmetry of integrated Joule heating as significant as 28.43% and 34.72%, respectively, which can be even stronger than other causes when the geomagnetic activity is intense.

     
    more » « less
  7. Abstract

    During geomagnetically active times, the enhanced ion convection and particle precipitation at high latitudes cause substantial disturbances in the ionosphere and thermosphere. Large‐scale traveling ionospheric disturbances (LSTIDs) were identified from Global Positioning System (GPS) total electron content (TEC) measurements from 06:30 to 08:30 UT on 26 March 2014 as a result of southward turning of the interplanetary magnetic field (IMF) Bzand enhanced particle precipitation during a substorm. The comparison of LSTIDs from the global ionosphere‐thermosphere model (GITM) simulations with GPS TEC measurements shows a general agreement. Further theoretical analyses with GITM were conducted to sperate the influence of ion convection and particle precipitation on the total Joule heating as well as on the resulting large‐scale traveling atmospheric disturbances (LSTADs) and LSTIDs. It was found that ion convection and particle precipitation have comparable contributions to the total Joule heating, although the changes of height‐integrated Joule heating due to these two forcing terms may display different distributions. In addition, the magnitudes of neutral density and TEC perturbations due to these two forcing terms were found to be comparable. Using the total energy flux versus time derived from all‐sky imager measurements for this event to drive GITM improves the data‐model comparison of LSTIDs. However, data‐model discrepancies still exist in the timing of LSTIDs and the magnitude of TEC perturbations, which calls for further investigation and realistic event‐specific specifications.

     
    more » « less
  8. Abstract

    Using Fabry‐Perot interferometers at five midlatitude stations (Boulder, Palmer, Millstone Hill, Mount John, and Kelan) in both hemispheres, we examine the interhemispheric and seasonal variations of midlatitude thermospheric dynamics. We also use the National Center for Atmospheric Research Thermosphere Ionosphere Electrodynamics General Circulation Model (TIEGCM) to simulate the seasonal changes of winds and the effects from Sub‐Auroral Polarization Streams. The observations and TIEGCM simulations show a clear seasonal variation with more westward and equatorward summer winds. The TIEGCM runs overestimate the westward zonal winds and underestimate the electron densities in the northern summer. We believe that the underestimated TIEGCM electron density leads to a weak ion drag effect in the model, and strong westward zonal winds. TIEGCM overestimates the Sub‐Auroral Polarization Stream effects on neutral winds in most cases, probably because the empirical Sub‐Auroral Polarization Stream model used by the TIEGCM applies an unrealistic persistent electric field for a long period of time (over 3 hr) due to the low temporal resolution of theKpindex.

     
    more » « less